241 research outputs found

    Integer quantum Hall effect of interacting electrons: dynamical scaling and critical conductivity

    Full text link
    We report on a study of interaction effects on the polarization of a disordered two-dimensional electron system in a strong magnetic field. Treating the Coulomb interaction within the time-dependent Hartree-Fock approximation we find numerical evidence for dynamical scaling with a dynamical critical exponent z=1 at the integer quantum Hall plateau transition in the lowest Landau level. Within the numerical accuracy of our data the conductivity at the transition and the anomalous diffusion exponent are given by the values for non-interacting electrons, independent of the strength of the interaction.Comment: Minor changes. Final version to be published in Phys. Rev. Lett. June 2

    Liouvillian Approach to the Integer Quantum Hall Effect Transition

    Full text link
    We present a novel approach to the localization-delocalization transition in the integer quantum Hall effect. The Hamiltonian projected onto the lowest Landau level can be written in terms of the projected density operators alone. This and the closed set of commutation relations between the projected densities leads to simple equations for the time evolution of the density operators. These equations can be used to map the problem of calculating the disorder averaged and energetically unconstrained density-density correlation function to the problem of calculating the one-particle density of states of a dynamical system with a novel action. At the self-consistent mean-field level, this approach yields normal diffusion and a finite longitudinal conductivity. While we have not been able to go beyond the saddle point approximation analytically, we show numerically that the critical localization exponent can be extracted from the energetically integrated correlation function yielding ν=2.33±0.05\nu=2.33 \pm 0.05 in excellent agreement with previous finite-size scaling studies.Comment: 9 pages, submitted to PR

    Wave-packet dynamics at the mobility edge in two- and three-dimensional systems

    Full text link
    We study the time evolution of wave packets at the mobility edge of disordered non-interacting electrons in two and three spatial dimensions. The results of numerical calculations are found to agree with the predictions of scaling theory. In particular, we find that the kk-th moment of the probability density (t)(t) scales like tk/dt^{k/d} in dd dimensions. The return probability P(r=0,t)P(r=0,t) scales like tD2/dt^{-D_2/d}, with the generalized dimension of the participation ratio D2D_2. For long times and short distances the probability density of the wave packet shows power law scaling P(r,t)tD2/drD2dP(r,t)\propto t^{-D_2/d}r^{D_2-d}. The numerical calculations were performed on network models defined by a unitary time evolution operator providing an efficient model for the study of the wave packet dynamics.Comment: 4 pages, RevTeX, 4 figures included, published versio

    Metal-insulator transitions in anisotropic 2d systems

    Full text link
    Several phenomena related to the critical behaviour of non-interacting electrons in a disordered 2d tight-binding system with a magnetic field are studied. Localization lengths, critical exponents and density of states are computed using transfer matrix techniques. Scaling functions of isotropic systems are recovered once the dimension of the system in each direction is chosen proportional to the localization length. It is also found that the critical point is independent of the propagation direction, and that the critical exponents for the localization length for both propagating directions are equal to that of the isotropic system (approximately 7/3). We also calculate the critical value of the scaling function for both the isotropic and the anisotropic system. It is found that the isotropic value equals the geometric mean of the two anisotropic values. Detailed numerical studies of the density of states for the isotropic system reveals that for an appreciable amount of disorder the critical energy is off the band center.Comment: 6 pages RevTeX, 6 figures included, submitted to Physical Review

    Scaling in the Integer Quantum Hall Effect: interactions and low magnetic fields

    Full text link
    Recent developments in the scaling theory of the integer quantum Hall effect are discussed. In particular, the influence of electron-electron interactions on the critical behavior are studied. It is further argued that recent experiments on the disappearance of the quantum Hall effect at low magnetic fields support rather than disprove the scaling theory, when interpreted properly.Comment: 13 pages, invited talk at DPG spring meeting, Regensburg, March 2000, to appear in Advances in Solid State Physics, ed. B. Krame

    Streda-like formula in spin Hall effect

    Full text link
    A generalized Streda formula is derived for the spin transport in spin-orbit coupled systems. As compared with the original Streda formula for charge transport, there is an extra contribution of the spin Hall conductance whenever the spin is not conserved. For recently studied systems with quantum spin Hall effect in which the z-component spin is conserved, this extra contribution vanishes and the quantized value of spin Hall conductivity can be reproduced in the present approach. However, as spin is not conserved in general, this extra contribution can not be neglected, and the quantization is not exact.Comment: 4 pages, no figur

    Charged particles in random magnetic fields and the critical behavior in the fractional quantum Hall effect

    Full text link
    As a model for the transitions between plateaus in the fractional Quantum Hall effect we study the critical behavior of non-interacting charged particles in a static random magnetic field with finite mean value. We argue that this model belongs to the same universality class as the integer Quantum Hall effect. The universality is proved for the limiting cases of the lowest Landau level, and slowly fluctuating magnetic fields in arbitrary Landau levels. The conjecture that the universality holds in general is based on the study of the statistical properties of the corresponding random matrix model.Comment: 11 pages, Revtex 3.0, no figures, to appear in PR

    Isolated resonances in conductance fluctuations in ballistic billiards

    Full text link
    We study numerically quantum transport through a billiard with a classically mixed phase space. In particular, we calculate the conductance and Wigner delay time by employing a recursive Green's function method. We find sharp, isolated resonances with a broad distribution of resonance widths in both the conductance and the Wigner time, in contrast to the well-known smooth conductance fluctuations of completely chaotic billiards. In order to elucidate the origin of the isolated resonances, we calculate the associated scattering states as well as the eigenstates of the corresponding closed system. As a result, we find a one-to-one correspondence between the resonant scattering states and eigenstates of the closed system. The broad distribution of resonance widths is traced to the structure of the classical phase space. Husimi representations of the resonant scattering states show a strong overlap either with the regular regions in phase space or with the hierarchical parts surrounding the regular regions. We are thus lead to a classification of the resonant states into regular and hierarchical, depending on their phase space portrait.Comment: 2 pages, 5 figures, to be published in J. Phys. Soc. Jpn., proceedings Localisation 2002 (Tokyo, Japan
    corecore